**Introduction**

In this lesson, you will review how to find the x- and y-intercepts of a line.

This video illustrates the lesson material below. Watching the video is optional.

**X- and Y-Intercepts**

Intercepts are an important part of graphs. They indicate a lot about data. For example, y-intercepts often give a starting amount. Here are some vocabulary words to help you with this lesson:

**x-intercept:**where the graph crosses the x-axis, and where \(y = 0\)**y-intercept:**where the graph crosses the y-axis, and where \(x = 0\)

The x-intercept is anywhere that the line crosses the x-axis. The x-axis is also known as the horizontal axis. The y-intercept is anywhere that the line crosses the y-axis.

Figure 1

At the y-intercept point, \(x=0\). Similarly, at the point at which the line crosses the x-axis, \(y=0\). At the point where the line crosses the x-axis, *y *will always be 0. The value of *x* will change depending on the line, but any time the line crosses the x-axis, \(y=0\).

Any time the line crosses the y-axis, *x* has to be 0. The value of *y* may be different, but the *y* will be where it crosses.

Figure 2

When you know this information, you still need to estimate the value of *x* for the x-intercept and the value of *y* for the y-intercept.

**Example 1**

Estimate the y-intercept of the line in Figure 2.

If you look at the x-intercept, you can estimate it at 1.5. The estimated x-intercept is written as: \((1.5, 0)\). The y-intercept is approximately at 3. The estimated y-intercept is written as \((0, 3)\).

**Things to Remember**

- At the x-intercept point, \(y=0\).
- At the y-intercept point, \(x=0\).

### Practice Problems

**Use the following graph to answer questions 1 through 6.**

- What is the y-intercept of line A? (Solution
- What is the x-intercept of line B? (Solution
- What is the y-intercept of line B? (Solution
- What are the x-intercept and y-intercept of line C? (Solution
- What are the x-intercept and y-intercept of line D? (Solution
- What are the x-intercept and y-intercept of line E? (Solution

**Need More Help?**

- Study other Math Lessons in the Resource Center.
- Visit the Online Tutoring Resources in the Resource Center.
- Contact your Instructor.
- If you still need help, Schedule a Tutor.